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Visual attention in Visual Question Answering (VQA) targets at locating the right image regions regarding the

answer prediction, offering a powerful technique to promote multi-modal understanding. However, recent

studies have pointed out that the highlighted image regions from the visual attention are often irrelevant to

the given question and answer, leading to model confusion for correct visual reasoning. To tackle this problem,

existing methods mostly resort to aligning the visual attention weights with human attentions. Nevertheless,

gathering such human data is laborious and expensive, making it burdensome to adapt well-developed models

across datasets. To address this issue, in this article, we devise a novel visual attention regularization approach,

namely, AttReg, for better visual grounding in VQA. Specifically, AttReg first identifies the image regions that

are essential for question answering yet unexpectedly ignored (i.e., assigned with low attention weights) by

the backbone model. And then a mask-guided learning scheme is leveraged to regularize the visual attention

to focus more on these ignored key regions. The proposed method is very flexible and model-agnostic, which

can be integrated into most visual attention-based VQA models and require no human attention supervision.

Extensive experiments over three benchmark datasets, i.e., VQA-CP v2, VQA-CP v1, and VQA v2, have been

conducted to evaluate the effectiveness of AttReg. As a by-product, when incorporating AttReg into the

strong baseline LMH, our approach can achieve a new state-of-the-art accuracy of 60.00% with an absolute

performance gain of 7.01% on the VQA-CP v2 benchmark dataset. In addition to the effectiveness validation,

we recognize that the faithfulness of the visual attention in VQA has not been well explored in literature. In

the light of this, we propose to empirically validate such property of visual attention and compare it with the

prevalent gradient-based approaches.
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1 INTRODUCTION

With the great progress of natural language processing, computer vision, and multimodal repre-
sentation learning, Visual Question Answering (VQA) has emerged as a significant interdisci-
plinary task in recent years. VQA aims to correctly answer natural language questions about an
image [4, 12, 47] or a video [44, 45, 50]. As an “AI-complete” problem, VQA encounters a variety
of research challenges, such as recognition, counting, and multi-modal understanding. Canon-
ical methods often cast VQA as a classification task [2, 3, 13, 16–18, 24, 29, 30, 46], where the
image and question are processed via Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs), respectively. Among the existing methods, an intriguing design is to
apply the visual attention mechanism to image regions based on the given question, equipping
VQA models with the capability of visual grounding and explanation.

Generally speaking, the visual attention in VQA executes an explicit step of identifying “where
to look” [39, 43]. To be more specific, it allows the model to assign distinctive weights to different
image regions, which are computed via the semantic similarity between the given question and
image features, as illustrated in Figure 1. Similar to human vision systems, the image regions with
high attention weights are commonly deemed as where the model looks at when making predic-
tions. Accordingly, by spotting such relevant image regions, the visual attention is able to not only
reduce noisy features but also construct more refined visual representations.

Despite the fact that existing VQA models have benefited a lot from the visual attention, one
imperative issue lies in the lack of guidance for visual grounding. This often leads visual attention
mechanisms to focus on image regions that are less relevant to the correct answer [10, 38]. As
shown in Figure 1, the visual attention in the backbone model focuses on the much less important
region dog while it ignores the most relevant one frisbee, misleading the model to predict the
incorrect answer brown. To deal with this issue, a seemingly straightforward solution is to align
visual attention weights with explicit human attentions [33, 49]. Collecting such data is, however,
expensive and difficult [10], thereby limiting the practicality of this kind of approach.

Orthogonal to the visual attention, another prevalent branch for improving visual grounding
is resorting to gradient-based techniques (specifically Grad-CAM [37]), which allow us to under-
stand model prediction through activation mappings from gradients. For instance, the method
in Reference [38] calculates the gradient of each image region according to the predicted scores
of ground-truth answers and encourages the rank consistency between the gradients and human
attentions for better visual grounding. More recently, Wu and Mooney [42] utilized the textual an-
notations (e.g., QA pairs) as auxiliary information and regularized visual grounding by penalizing
the gradients of important regions to wrong answers. However, our experiments reveal that such
explanations obtained via Grad-CAM are not trustworthy for visual grounding compared with
that of visual attention. One notable problem is that the image regions with large gradients are
not positively related to model predictions, which violates the intuition that Grad-CAM is specially
designed for visual grounding in VQA [38].

To overcome the limitations of previous approaches, in this article, we present a novel visual
attention regularization method, dubbed as AttReg, to guide the learning of visual attention in
VQA. As illustrated in Figure 1, AttReg aims to achieve better accuracy via attention weights
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Fig. 1. Demonstration of the visual attention in VQA and our regularization method. The green box (i.e.,

frisbee) in the middle image denotes the key region ignored by the backbone visual attention mechanism,

wherein lower attention weight is assigned compared to the pink box (i.e., dog). In the rightmost image, our

AttReg regularizes the model to focus more on the most relevant frisbee region.

regularization. Concretely, for each training sample, AttReg first identifies the ignored key regions,
i.e., the image regions pivotal to the question answering yet assigned with low attention weights.
Then, AttReg constructs a curated image with these ignored key regions being masked, and a new
training sample is thereby built by pairing the same question to the curated image. Next and cru-
cially, different from the original training, AttReg forces the model to answer None when given
the curated sample, since the relevant image regions (i.e., ignored key regions) are masked and
invisible under this situation.1 In this way, the model would be regularized to shift more attention
weights to these ignored key regions, hence boosting the answer prediction accuracy. In a nutshell,
our end-to-end approach is simple to implement, which requires no human supervision and can
be applied to most of the existing visual attention-based VQA models. We conduct extensive exper-
iments on three VQA datasets, i.e., VQA-CP v1 [1], VQA-CP v2 [1], and VQA v2 [15], to verify the
effectiveness of the proposed method. Experimental results have shown that our proposed method
is capable of guiding the visual attention learning and enhancing the performance of many visual
attention-based VQA models.

In addition to the effectiveness validation, we notice that the faithfulness of the visual attention
in VQA has not been well explored so far. The faithfulness here refers to the consistency between
the attention weight and the contribution of its corresponding image region to model predictions.
In particular, weak faithfulness can be obtained if the regions with high attention weights often
have little influence on model predictions. To justify such a property, we empirically conduct oc-
clusion studies [37] on a well-devised visual attention model—UpDn [2]. We found that the learned
attention weight is reasonably correlated with the influence of image regions in model prediction,
which demonstrates the favorable faithfulness of visual attention.

In summary, the contributions of this work are three-fold:

• We present a novel visual attention regularization approach in VQA, which is able to guide
the model towards correctly answering questions based on right image regions. The pro-
posed regularization method is model-agnostic, requiring no human attention supervision,
and can be incorporated into most visual attention-based VQA models, such as UpDn and
LMH [9].
• We empirically study the faithfulness of prevalent visual attention in VQA. The results ex-

hibit that the visual attention is more faithful to model predictions in comparison with Grad-
CAM.

1None can be understood as “I don’t know.” That is, a model’s predicted scores of all candidate answers are zeros.
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• Extensive experiments demonstrate that the proposed method can simultaneously improve
the visual grounding accuracy and the backbone model performance. As a side product, by
introducing our regularization method to a strong model LMH, we can achieve a new state-
of-the-art performance over the VQA-CP v2 dataset. We have released the involved data,
codes, and parameter settings to facilitate other researchers in this community.2

The remainder of this article is organized as follows: Section 2 reviews the related work. In
Section 3, we introduce the visual attention in VQA and our proposed method. Experimental set-
tings and results are illustrated in Section 4, followed by conclusion and future works in Section 5.

2 RELATED WORK

In this section, we discuss two categories that are closely related to this work: visual attention in
VQA and visual grounding enhancement for VQA.

2.1 Visual Attention in VQA

Towards multimodal understanding, visual attention has been widely applied in many applica-
tions, such as image captioning [25, 51], visual dialogue [11], and video action recognition [22].
In VQA, the visual attention is first introduced to address the “where to look” problem by directly
calculating the semantic similarity between the question and image regions [39]. To obtain more
fine-grained visual representation, Reference [29] later applied the hierarchical question structure
modeling for image attention. The question representations are learned from multi-levels, e.g.,
word-level and phrase-level, which are effectively employed to conduct visual attention recursively.
In addition, the multi-glimpse visual attention mechanism [46] is subsequently proposed to iter-
atively infer the answer by attending on visual features multiple times. Different from the above
top-down visual attention methods, Anderson et al. [2] presented a combined bottom-up and

top-down attention mechanism (UpDn), which first detects common objects and attributes in
an image and then leverages visual attention to attend on these high-level concepts. This technique
has been widely adopted and extended in recent studies [6, 7, 42], boosting the performance of a
series of VQA models.

However, the above visual attention-based models are all restricted by the lack of guidance
for visual grounding [10, 38]. It is thus normal that these VQA models are inclined to focus on
irrelevant visual contents or even resort to superficial biases to answer questions [7, 34, 38]. To
address this problem, in this work, we present a novel regularization strategy to guide the attention
learning and boost the answer prediction accuracy.

2.2 Visual Grounding Enhancement for VQA

One of the most desired properties for VQA systems is to equip correct visual grounding for model
predictions, i.e., right for right reasons [36, 42]. Existing approaches for this purpose are mainly
based on two powerful techniques: (1) visual attention and (2) Grad-CAM. The methods based on
visual attention [33, 49] target at aligning the attention weights with explicit human attentions.
Nevertheless, since the human attention data are far too expensive and difficult to collect, the
practicability and generalization of such methods are largely limited.

In contrast, Grad-CAM ones encourage the consistency between human annotations and region
gradients derived from model predictions. For example, Selvaraju et al. [38] presented a human

importance-aware network tuning (HINT) to enforce the region’s gradient to share the same
ranking with human attentions. SCR [42] leverages the textual annotations (e.g., QA pairs) to relate
with the influential regions in images first, and then criticizes the sensitivity of incorrect answers

2https://github.com/BierOne/VQA-AttReg.
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to these influential regions. More recently, Chen et al. [7] designed a Counterfactual Samples

Synthesizing (CSS) scheme, which guides visual grounding by forcing important regions to ob-
tain high gradients from correct answers. Different from the above ones, Patro et al. [31] devised
an adversarial learning strategy, which utilizes the Grad-CAM results as the surrogate supervi-
sion for attention maps. However, our experiments demonstrate that the regions highlighted by
Grad-CAM are not always where the model focuses on when making predictions, which limits its
visual grounding capability to some extent. In addition, Shrestha et al. [40] pointed out that the im-
provement brought by these methods does not actually emerge from proper visual grounding, but
from regularization effects. Teney et al. [41] further extended this finding with detailed analysis
on in-domain and out-of-distribution (OOD) sets.

3 APPROACH

Our approach aims at regularizing VQA models to predict the right answers based on the right
image regions. In the following, we first state the basic knowledge of VQA and its visual attention
variant in Section 3.1. The details of the proposed method are then elaborated in Section 3.2.

3.1 Preliminaries

Problem Formulation. The goal of VQA is to provide a correct answer Â to a given textual
question Q upon an image I . And the common function of VQA is formulated as a classification
problem:

Â = arg max
Aj ∈A

P (Aj |Q, I ; Θ), (1)

where A denotes the candidate answer set and Θ denotes all the model parameters. Note that,
in an open-ended VQA task, there can be multiple correct answers for each instance. Hence, we
formulate the VQA task as a multi-label classification problem in this article.

Visual Attention in VQA (VAtt). Traditional visual attention mechanisms [26, 29, 46, 53] in VQA
often perform on the equal-sized image regions. The complementary bottom-up attention mech-
anism is therefore proposed to detect objects and attributes in images for identifying high-level
concepts [2]. In this article, we mainly recap the bottom-up and top-down (UpDn) attention
model.

As illustrated in Algorithm 1, for each image I , the UpDn model utilizes the object detection
techniques (e.g., Faster R-CNN [23, 35]) to extract a object feature setV = {vk }Kk=1

. And for each
question Q , an RNN (e.g., GRU [8]) is used to capture the sequential features represented by q, i.e.,
q = RNN(Q ). The visual attention mechanism is then utilized to refine visual representations by
employing the question feature to attend on each object in the image,

si = w
T
a fa ([vi ,q]), (2)

α = softmax(s ), (3)

v̂ =

K∑
i=1

αivi , (4)

where α and s , respectively, denote the attention weights and the computed scores for image
objects, wa is a trainable parameter vector, fa (·) denotes the fusion function, and v̂ is the final
visual representation. The weighted visual feature v̂ and the question feature q are then fed into
the answer prediction module fp to predict the confidence for all candidate answers,

p = fp (v̂,q). (5)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 4, Article 93. Publication date: February 2022.



93:6 Y. Liu et al.

ALGORITHM 1: Typical Visual Attention-based Model (UpDn)

1: function UpDn(I , Q , Â)
2: V ← RCNN(I ), q ← RNN(Q ) � image features and question features

3: α ← VAtt(V,q) � visual attention weights

4: v̂ ← ∑K
i=1 αivi � final visual representation

5: p ← fp (v̂,q) � predicted probabilities for all candidate answers

6: Compute soft values y for ground-truth answers Â
7: Compute loss L according to Equation (6)
8: return α , L
9: end function

In fact, each question may have several correct answers due to the differentiation in human

annotators. Hence, the model prediction is supervised by a set of soft valuesy ∈ [0, 1] |A | , whereyj

denotes the occurrence probability of the candidate answerAj based on the human labeled answers.
Specifically, UpDn adopts the binary-cross-entropy loss to optimize the model parameters,

L = −
∑

i

∑
j

yi j log (pi j ) − (1 − yi j ) log (1 − pi j ), (6)

where the indices i and j refer to the training questions and candidate answers, respectively.

3.2 Visual Attention Regularization (AttReg)

Existing VQA models often make mistakes due to the inappropriate visual grounding. To tackle this
issue, in this work, we regularize the visual attention for better model performance. As shown in

Figure 2, given a training sample <Q, I , Â>, we first identify the ignored key objects and construct a
new curated image Im with these objects being masked. Then, we append a complementary sample

<Q, Im , Âm> to regularize the model for better attention learning. Overall, our method could be
regarded as a data augmentation technique, which guides the model learning by synthesizing the
curated training samples. The following will sequentially introduce two procedures of AttReg:

1. Curated-image Construction. The module of curated-image construction consists of three
main steps: (i) identifying key objects related to the QA pair, represented asV ∗; (ii) locating ignored
objects through visual attention, represented asV o ; (iii) masking the ignored key objects (i.e.,V ∗ ∩
V o ) and constructing a new curated image Im .

Particularly, we first take the QA pair as the auxiliary information to determine the importance
of each object in the image. Following Reference [42], we assign POS tags to each word in the
QA using the spaCy POS tagger [19] and extract nouns in the QA. Thereafter, we calculate the
cosine similarity between the GloVe [32] embedding of object categories and the extracted nouns.3

And then, we select top-M objects whose similarity scores are greater than threshold σ as key
objects V ∗. We consider these objects as essential, since they are highly related to the QA. Note
that directly leveraging these extracted key objects as the supervision is sub-optimal as studied
in prior work [38]. The dominant reason is that the presence of superficial linguistic correlations
(i.e., language biases [15, 48]) can easily mislead the model to ignore visual content even under a
strong supervision [38]. In the light of this, we instead apply these key objects to compose a new
training sample, which can help the model build correlation between the right visual information
and the ground-truth answer. The superficial bias can also be alleviated to some extent.

3Object categories are the outputs from the used faster-RCNN network, which can extract object features and predict its

category simultaneously.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 4, Article 93. Publication date: February 2022.



Answer Questions with Right Image Regions 93:7

Fig. 2. Illustration of the proposed AttReg for regularizing the visual attention. (a) Given a training sample,

a curated image is first constructed by masking the identified ignored key objects. (b) The AttReg then

composes a new training sample to regularize the visual attention to focus more on the ignored key objects.

Second, we take the attention weights α as the evaluation standard for examining the influence
of each object in model prediction. Specifically, to avoid trivial procedures, we directly select image
objects with attention weight rank in the last-N% as the ignored objects V o . The main idea is
that remaining merely a few image objects with the highest attention weights can achieve very
competitive performance (e.g., a minor drop of −0.55% if only remaining top 20%), which implies
that most objects ranked lower hardly impose an effect on model predictions; as a result, we can
deem such objects as ignored by the model.

Last, we use the intersection of V ∗ and V o as the ignored key objects and mask them in the
original image I to construct a new curated image Im . It should be mentioned that the above
preprocessing steps are consistent with existing studies [2, 6, 7, 9, 17, 21, 27, 28, 34, 40–42, 52],
e.g., employing the same faster-RCNN features and POS Tagger. Thus, while inevitable limitations
might exist, we choose to neglect them following prior works for a fair comparison.

2. Mask-guided Learning Scheme. Based on the curated image Im , we then design a mask-
guided learning scheme to regularize the model, which emphasizes more on the ignored key objects
towards question answering. We argue that a VQA model cannot correctly answer the question if
it is blind to the key objects from the given image. In a sense, the curated image Im lacks essential
visual information in correctly answering the question Q because the key objects are masked. We

hence simply zero-out all ground-truth answers in Â for <Q, Im> and compose a new training

sample <Q, Im , Âm>, i.e., Âm is ∅ (more examples can be found in Figure 3). In this way, when the
training image loses the ignored key objects, the model would be trained towards a different target;
thereby AttReg can constrain such ignored objects to yield stronger influence in model prediction.
More importantly, this influence can be seamlessly transferred to the attention weights learning
because of their positive correlations (Figure 7(b)).

However, by training the model with <Q, Im , Âm> and <Q, I , Â> simultaneously, the existence
of the masked visual information (i.e., ignored key objects) would be strengthened as a necessary
condition for predicting the correct answers, as illustrated in Figure 2(b). Hence, the strong cor-
relation between the ignored key objects and the ground-truth answers can be built under this
situation. We summarize this method in Algorithm 2.

Overall, we optimize the parameters in our model by simultaneously training with the original
and curated samples,

Lall = Lvqa + λLr eд , (7)
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Fig. 3. Two running examples from AttReg. The green boxes denote the ignored key objects, and the value

around the bounding box is the attention weight to the given object.

ALGORITHM 2: Visual Attention Regularization (AttReg)

1: function AttReg(I , Q , Â) � Backbone model (UpDn) fine-tuning

2: V ∗ ← key objects identification

3: α , Lvqa ← UpDn(I ,Q, Â) � original training sample

4: V o ← ignored objects localization
5: Im ← masking ignored key objects (V ∗ ∩V o ) in I
6: Âm := ∅

7: _, Lr eд ← UpDn(Im ,Q, Âm ) � curated training sample

8: Lall ← Lvqa + λLr eд � parameter update

9: end function

where Lvqa and Lr eд , respectively, denote the original sample training loss and curated sample
training loss, and λ is a hyper-parameter to control the regularization strength. In the training
phase, the generation of a curated sample is determined by the number of ignored key objects.
Specifically, if the number of the ignored key objects is ≥1, then one sample will be curated for
model learning, otherwise not. In the testing phase, the regularization module is no longer acti-
vated and only the backbone model remains.

4 EXPERIMENTS

4.1 Datasets and Experimental Settings

Datasets. We evaluated the proposed AttReg mainly on the diagnostic VQA-CP datasets [1],
wherein the answer distributions for each question category in the training and testing sets are
significantly different. As such, most VQA models that lack visual grounding ability and rely on su-
perficial correlations between questions and answers (i.e., language biases) would perform poorly
on this dataset. The experimental results on the VQA v2 [15] are also reported for completeness.

Evaluation Metrics. We adopted the standard VQA accuracy metric [4] to evaluate the model
performance, which is defined as,

ACC (ans ) = min

{
1,

#humans that provide ans

3

}
. (8)

Note that each question is answered by 10 annotators, and ACC considers the disagreement among
human answers.

Implementation and Training Details. We implemented our method following the preprocess-
ing steps of the widely adopted UpDn [2] as well as the LMH [9] for a fair comparison. Specifi-
cally, for each image, the UpDn utilizes Faster-RCNN to generate 36 object proposals as the visual
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Table 1. Performance Comparison between the Proposed Method and the State-of-the-arts on

VQA-CP v2 Test and VQA v2 val

Method Expl. Att. Grad.
VQA-CP v2 test VQA v2 val Mean

All Yes/No Number Other All Yes/No Number Other All

SAN (2016) [46] 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84 38.69
NMN (2016) [3] 27.47 38.94 11.92 25.72 51.62 73.38 33.23 39.93 39.55
HAN (2018) [30] 28.65 52.25 13.79 20.33 - - - - -
GVQA (2018) [1] 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65 39.77
MCB (2016) [13] 36.33 41.01 11.96 40.57 59.71 77.91 37.47 51.76 48.02

MuRel (2019) [5] 39.54 42.85 13.17 45.04 - - - - -
AdvReg (2018) [34] 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 51.96
RUBi (2019) [6] 47.11 68.65 20.28 43.18 61.16 - - - 54.14
EraseAtt (2019) [28] 37.43 41.98 13.00 41.74 65.99 - - - 51.71
DecompLR (2020) [21] 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54 53.42
SimpleReg (2020) [40] 48.90 - - - 62.60 - - - 55.75
RMFE (2020) [14] 54.55 74.03 49.16 45.82 - - - - -
RandImg (2020) [41] 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57 56.31
SelfSup (2020) [52] 57.59 86.53 29.87 50.03 63.73 - - - 59.55
CL (2020) [27] 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71 58.24

UpDn (2018) [2] 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 51.61

UpDn† (2018) [2] 40.09 42.16 12.36 46.61 63.77 81.54 43.64 55.59 51.93
UpDn-SCR (2019) [42] QA � 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50 55.39
UpDn-HINT (2019) [38] HAT � 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56 55.06
UpDn-AttAlign (2019) [38] HAT � 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22 51.31
UpDn-CSS (2020) [7] QA � 41.16 43.96 12.78 47.48 - - - - -
UpDn-AttReg (Ours) QA � 46.75 66.23 11.94 46.09 64.13 81.72 43.77 56.13 55.44

LMH (2019) [9] 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04 57.05

LMH† (2019) [9] 52.99 72.02 39.24 46.79 62.40 79.42 41.48 54.99 57.70
LMH-SCR (2019) [42] QA � 52.31 73.43 36.75 45.51 - - - - -
LMH-HINT (2019) [38] HAT � 52.58 74.41 36.78 45.48 - - - - -
LMH-CSS (2020) [7] QA � 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 59.43
LMH-AttReg (Ours) QA � 60.00 86.80 51.63 48.25 62.74 79.71 41.68 55.42 61.37

Expl. implies the source of the explanations, e.g., human attention (HAT) [10]. Att. represents the visual attention

regularization approach. Grad. stands for the Grad-CAM methods. †denotes our implementation. The mean score

represents the accuracy average on VQA-CP v2 and VQA v2.

features, i.e., a 2,048-d vector for each object. All the questions are converted to lower case and
trimmed to a maximum of 14 words. And the questions with less than 14 words are padded with
zeros. The pre-trained GloVe vectors are used to initialize the word embedding matrix, i.e., a 300-d
vector for each word. And then a single-layer GRU is employed to obtain sentence-level question
encoding of 512-d.

We first pretrained the backbone model on the training splits using the plain VQA loss Lvqa .
We then regularized the visual attention for the backbone model by fine-tuning with Lall in
Equation (7). For UpDn and LMH, the learning rate is set to 2e-3 during pre-training and reduced
to 2e-5 and 2e-4 when fine-tuning, respectively. In addition, the λ of AttReg is set to 1.0 and 0.5
for the UpDn and LMH, respectively. And for the ignored objects, the proportion of N% is tuned
between 10% and 40%. The number of the key objects M is tuned between 1 and 6.

4.2 Comparisons with State-of-the-arts

Performance on VQA-CP v2 and VQA v2. Table 1 exhibits the results of our method and the
SOTA VQA models on VQA-CP v2 and VQA v2. The test results of our method on VQA v2 are
illustrated in Table 2. The main observations are as follows:

First, our LMH-AttReg achieves a new state-of-the-art of 60.00% ACC on the VQA-CP v2 dataset.
Specifically, the LMH-AttReg performs better than the existing best approach CL over all three
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Table 2. Performance of the Proposed Method

on VQA v2 Test-std

Method All Yes/No Number Other

UpDn† 64.90 81.82 42.73 55.51
UpDn-AttReg (Ours) 65.25 82.18 43.68 55.71

LMH† 63.31 78.15 41.08 55.48
LMH-AttReg (Ours) 63.43 78.28 40.7 55.72

†denotes our implementation.

answer categories. In addition, our LMH-AttReg also achieves the highest mean score over the
two datasets among the existing state-of-the-arts, i.e., LMH-AttReg vs. SelfSup (61.37% vs. 59.55%)

Second, our AttReg dramatically improves the backbone model performance on the VQA-CP v2
dataset. By incorporating AttReg into UpDn, a large improvement is achieved (i.e., +6.66%). And
LMH-AttReg also yields a large gain (i.e., +7.01%) over its backbone LMH, which highlights the
effectiveness and the generalization capability of AttReg.

Third, our AttReg can enhance the backbone model performance on the VQA v2 dataset over
all answer categories. In contrast, most approaches that perform well on VQA-CP v2 suffer perfor-
mance drop over this dataset. For example, introducing SCR [42] into UpDn leads to a significant
improvement of +8.65% on VQA-CP v2; whereas the 1.47% performance drop can be observed when
SCR works on VQA v2. By comparison, AttReg can enhance UpDn on both VQA-CP v2 (+6.66%)
and VQA v2 (+0.36%), which further reveals the robustness of AttReg.

Fourth, we compared our AttReg with a straightforward visual attention regularization
method—AttAlign [38], which directly aligns visual attention with human attentions. The result
demonstrates that our AttReg outperforms AttAlign with a large margin on the two datasets, es-
pecially on VQA-CP v2 (46.75% vs. 39.37%). This proves the effectiveness and superiority of our
method among the visual attention regularization ones.

Last, we compared our AttReg with the existing gradient-based regularization methods. It can be
found that while these gradient-based methods enhance model performance significantly on VQA-
CP v2, they usually deteriorate the backbone model performance on VQA v2. Instead, our AttReg is
able to not only improve the model performance on the two datasets, but also achieve the highest
mean score over the two datasets among the existing grounding enhancement approaches, i.e.,
LMH-AttReg vs. LMH-CSS (61.37% vs. 59.43%) and UpDn-AttReg vs. UpDn-SCR (55.44% vs. 55.39%).
Furthermore, when incorporating SCR and HINT into the LMH backbone, the model performance
even exhibits a decrease (similar experimental results can be found in Reference [7]). In contrast,
our AttReg performs well on both backbones.

Performance on VQA-CP v1. Table 3 shows the results of our method and the SOTA VQA models
on the VQA-CP v1 dataset. From the results, we can observe that our LMH-AttReg achieves a new
state-of-the-art performance on VQA-CP v1. In addition, our AttReg significantly improves the
backbone performance on VQA-CP v1, i.e., +6.52% on LMH and +8.78% on UpDn.

4.3 In-domain and Out-of-domain Testing

Settings. Following Reference [41], we randomly held out 8,000 instances from the VQA-CP v2
train set to measure the in-domain performance (which we will refer to as “val” set), and we uti-
lized the VQA-CP v2 test set to measure the out-of-domain (OOD) performance. In addition, as
reported in References [40, 41], by exploiting the difference in the answer distribution, many ordi-
nary baselines could achieve very high performance on the VQA-CP v2 test set, especially on the
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Table 3. Performance Comparison between the Proposed

Method and State-of-the-arts on VQA-CP v1 Test

Method All Yes/No Number Other

SAN [46] 26.88 35.34 11.34 24.70
NMN [3] 29.64 38.85 11.23 27.88
GVQA [1] 39.23 64.72 11.87 24.86
MCB [13] 34.39 37.96 11.80 39.90
AdvReg [34] 43.43 74.16 12.44 25.32
RUBi [6] 50.90 80.83 13.84 36.02
CL [27] 61.27 88.14 34.43 45.34

UpDn† [2] 38.88 42.48 13.12 45.66

LMH† [9] 55.73 78.59 24.68 45.47
LMH-CSS [7] 60.95 85.60 40.57 44.62
UpDn-AttReg (Ours) 47.66 66.17 12.11 43.54
LMH-AttReg (Ours) 62.25 88.29 35.30 47.18

Table 4. In-domain and Out-of-distribution (OOD) Comparison between the

Proposed Method and the Baselines

Method
VQA-CP v2 val (in-domain) VQA-CP v2 test (OOD) Mean

All Yes/No Number Other All Yes/No Number Other Other

Random-predictions 37.62 70.10 32.79 10.55 10.44 25.87 9.27 2.57 6.56
Random-predictions-inverted 24.35 55.36 11.12 0.00 31.81 83.25 49.30 0.02 0.01

UpDn† 67.91 83.82 49.86 57.97 39.83 43.2 12.36 45.61 51.79
UpDn-TopAnsMasked 30.96 44.12 25.00 20.85 40.61 82.44 27.63 22.26 21.56
UpDn-RandImg 54.24 64.22 34.40 50.46 55.37 83.89 41.60 44.20 47.33
UpDn-SCR 67.09 82.57 48.33 57.73 42.76 53.02 12.24 45.77 51.75
UpDn-HINT 67.2 82.86 46.13 58.27 42.5 51.43 11.76 46.25 52.26
UpDn-AttReg (Ours) 68.23 84.49 49.87 58.28 41.12 45.01 12.91 46.82 52.55

The first group denotes plain approaches, followed by the methods applied on UpDn. †denotes our implementation.

As suggested in Reference [41], the results are selected with two requirements: (1) only using the val set for

selection (without peeking at test data); (2) models share the same settings as the ones in Table 1.

“Yes/No” and “Number” answer categories. Thus, we further added these baselines in the following
and compared them with our AttReg on both the in-domain and OOD sets.

Random-predictions. It samples answers at random according to the distribution of answers ob-
served per individual question type in the training set.

Random-predictions-inverted. This method exploits the knowledge that the distribution over the
test data is approximately proportional to the inverse of the distribution over the training data.

TopAnsMasked. It assigns, at test time, the lowest possible score to the answer of highest pre-
dicted score.

RandImg. This method augments the training data <Q,V , Â> with a copy of the same question

paired with random image featuresV ∗: <Q,V ∗, Â>. Moreover, in the training phase, it encourages
the score of the correct answer to be low if the given image is V ∗.

Comparison with Ordinary Baselines. Table 4 exhibits the performance of our methods and
the baselines across the in-domain and OOD sets. From the results, we could observe that (1)
our UpDn-AttReg achieves the best mean score (on the “Other” category) over the two datasets
among four ordinary baselines, e.g., UpDn-AttReg (52.55%) vs. RandImg (47.33%); (2) RandImg
and TopAnsMasked demonstrate great improvements over the “Yes/No” and “Number” categories
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Fig. 4. Performance change curves regarding the regularization strength λ over VQA-CP v2 and VQA v2. The

model retrained on VQA v2 shares the same setting as the corresponding model in VQA-CP v2.

on the OOD. However, their in-domain performance drops a lot on the same categories, which
is exactly a clue that their obtained improvements are achieved by exploiting the difference in
answer distributions. In contrast, our AttReg is hardly affected by this issue and improves model
performance over all answer categories on two datasets.

Comparison with SCR and HINT. To further validate the effectiveness of AttReg, we compared
its performance with SCR and HINT on the in-domain and OOD datasets (see Table 4). It can be
found that, while the SCR and HINT improve model performance on the OOD set, their accuracy
on the in-domain set exhibits a decrease compared with the baseline UpDn. Contrary to that, our
AttReg improves model performance on both sets and achieves the highest mean score on the
“Other” category, demonstrating advantages of AttReg over these two methods.

Retraining Results. As suggested in Reference [41], the regularization weight λ tunes the trade-
off between in-domain and OOD performance. As such, to further study the function of λ, we
plotted the performance of UpDn-AttReg in Figure 4. It can be observed that (1) in most cases
on the VQA-CP v2 dataset, a higher λ can help improve the model performance on the OOD test
set, and simultaneously the in-domain set performance drops; (2) when adopting an appropriate
λ (e.g., λ=1 for UpDn-AttReg), AttReg improves model performance on the all sets, i.e., in-domain
and OOD sets in VQA-CP v2, and VQA v2.

4.4 Ablative Studies

The Size of Key Objects V ∗. To evaluate the influence of |V ∗ |, we varied it from 1 to 6 to train
our model with different settings on the VQA-CP v2 dataset and reported the results in Figure 5(a).
It can be observed that the model accuracy obtains enhancement with a larger size of V ∗ but
deteriorates at some points, e.g., |V ∗ | = 6. The reason is that the image often contains certain
number of key objects, and therefore the performance is promoted when more key objects are
considered. Nonetheless, the objects with lower similarities with QA pairs can also be included
when |V ∗ | is too large. This would introduce noise into the identified key objects and deteriorate
AttReg’s effect.

The Size of Deemed Ignored ObjectsV o . As aforementioned, we took the objects with attention
weights in the last-N% as the ignored objectsV o . Thus, we quantify different N values to examine
the effects of |V o |, and the results are illustrated in Figure 5(a). It can be found that our AttReg
performs better when V o includes more objects with low weights, e.g., last 90%. This is because
a majority of low-rank objects are less influential and should be deemed as ignored objects. As
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Fig. 5. (a) The ACC curves with respect to different sizes of V ∗ and the proportion of the deemed ignored

objects V o . All results are obtained from the LMH-AttReg. (b) The number of ignored key objects regarding

the training epochs of LMH, LMH-RandMask, and our LMH-AttReg. Note that the RandMask and AttReg is

introduced to fine-tune the backbone LMH after five epochs.

Table 5. Performance Comparison between

the Proposed Method Using Different

Training Strategies

Method All Yes/No Number Other

Updn 40.09 42.16 12.36 46.61

UpDn-AttReg (w/o fine-tuning) 40.31 42.35 12.82 46.78

UpDn-AttReg (fine-tuning) 46.85 69.34 12.44 44.51

LMH 52.99 72.02 39.24 46.79

LMH-AttReg (w/o fine-tuning) 57.85 83.42 50.47 46.47
LMH-AttReg (fine-tuning) 59.92 87.28 52.39 47.65

w/o fine-tuning means that the AttReg is introduced to

regularize the backbone in an end-to-end way.

Table 6. The Influence of the Threshold σ on the

VQA-CP v2 Test

σ Ratio All Yes/No Number Other

0.6 80% 46.85 69.34 12.44 44.51
UpDn-AttReg 0.8 70% 45.05 64.95 11.94 43.70

1.0 20% 44.01 59.37 12.31 44.66

0.6 80% 59.92 87.28 52.39 47.65

LMH-AttReg 0.8 70% 58.41 83.65 50.64 47.33
1.0 20% 54.41 77.66 37.26 46.88

Ratio represents the proportion of training samples

containing identified key objects.

such, when V o is larger, the missed ignored objects in the locating process would be fewer and
our AttReg can work better under this situation.

The Training Strategy. For a further analysis of AttReg, we compared the effect of AttReg when
using different training strategies, and the results are reported in Table 5. It can be found that the
AttReg performs best when using a fine-tuning way. The reason to this is that at the beginning of
training, the visual attention module has not been trained favorably. As a result, it may introduce
noises for the model learning if we apply our AttReg too early.

The Threshold σ . Table 6 presents the performance of AttReg when using different threshold
σ to filter key objects. The results show that AttReg achieves better performance as σ becomes
lower. This is because when the filtering condition is relatively looser, the objects whose category
are more roughly related to the QA pair can be remained, e.g., computer (object category) and
laptop (noun in QA). Meanwhile, in this situation, AttReg can utilize more samples to regularize
the model.

4.5 Effectiveness in Improving Visual Attention

Quantitative Evaluation. Figure 5(b) shows how the number of ignored key objects changes
regarding the increase of training steps. It can be seen that the number of ignored key objects
assigned by the visual attention in the baseline LMH continuously increases with more training
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Table 7. Influence of the Visual Attention Module on

VQA-CP v2 and VQA v2 Datasets

Method
VQA-CP v2 VQA v2

All GapΔ All GapΔ

UpDn
Baseline 40.09 - 63.77 -
w/o VAtt 29.62 10.47 51.87 11.9

UpDn-AttReg
Baseline 46.85 - 64.13 -
w/o VAtt 35.34 11.51 51.88 12.25

GapΔ denotes the performance variation in comparison with the

baseline.

iterations after epoch 5. In contrast, this number is decreasing when the visual attention is guided
by our AttReg, which demonstrates the effectiveness of AttReg in regularizing the visual attention
to focus more on the ignored key objects. In addition, we further introduced a new baseline (i.e.,
RandMask) for comparison, which can be regarded as a variant of our AttReg. That is, RandMask
directly composes new samples by randomly masking images, while AttReg follows the human-
based visual clues. As shown in Figure 5(b), we can observe that the number of ignored key objects
continuously increases when RandMask is employed, yielding the same trend as the baseline LMH
but the opposite trend as our AttReg. This result further highlights the superiority of our AttReg
to the simple regularization, i.e., the capability of guiding model attention.

To more intuitively understand the improvement of visual attention, we conducted ablation
studies and calculated the performance gap for the backbone model with or without the visual
attention module. As shown in Table 7, we can observe that the performance gap becomes larger
if the visual attention is regularized by our AttReg, showing that the visual attention module plays
a more pivotal role in model performance enhancement.

Qualitative Evaluation. To better illustrate the effectiveness of AttReg, we visualized the atten-
tion maps generated by the backbones with and without our AttReg and exhibited the results in
Figure 6. In all cases, the backbone model shifts more attention to the ignored key objects after
introducing our AttReg. And the model is also promoted to predict the right answer with the cor-
rect visual grounding. Take the left one as an example; with our AttReg, the attention weight of
the ignored key object dress grows from 0.00 to 0.33 and becomes the most influential one among
all objects in the image, which further helps to yield the correct answer of blue.

4.6 Visual Attention Faithfulness Exploration

One intuitive property in visual attention is that the image regions with larger attention weights
should contribute more to model predictions, since these regions represent where the model fo-
cuses on when making decisions. Following Reference [38], we define this property as the faithful-
ness of visual attention. To justify it, we conduct occlusion studies and quantify the contribution
of image regions via two measurements: performance change and prediction variation.

Contribution to Model Performance. We empirically characterize visual attention weights
as the contribution of image regions towards model performance and measure the performance
change when using different portions of image features, e.g., image features with 10%–20% high-
est attention scores.4 In addition, we leverage the same setting to testify the faithfulness of the
Grad-CAM, and all the results are illustrated in Figure 7(a). We can see that for the curve re-
lated to attention, the model performance continuously declines as the attention weights of the

4Note that the image features we used are composed of 36 object proposal features extracted by Faster R-CNN.
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Fig. 6. Visualization of two backbone models with and without AttReg. The green boxes denote the ignored

key objects, and the pink ones represent the objects with highest attention weights. The value around the

bounding box is the visual attention weight to the given object.

Fig. 7. Faithfulness evaluation. (a) Performance curve regarding the weight intervals. (b) The TVD value with

respect to weight ranking.

maintained regions decrease. In contrast, by employing Grad-CAM as the visual grounding, the
model performance drops first but then improves with the descending of the maintained weights.
Further, the model performance of maintaining the lowest gradient weights even superior to the
one with the highest gradient weights, which is confusing, since regions with larger gradients in
Grad-CAM should contribute more to the model performance. Instead, the visual attention weight
shows a more acceptable consistency in model performance change.

Contribution to Model Prediction. To further study the relationship between the attention
weight and the contribution of the image region to model prediction, we remove each region se-
quentially according to its assigned weight value and observe the prediction variation. Specifically,
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the region contribution is quantified through the prediction variation with and without the current
image region, which is expressed by the Total Variation Distance (TVD) [20],

TVD(p1,p2) =
1

2

∑
i

|p1i − p2i |, (9)

where p1 and p2 represent two different sets of predicted scores for each answer, respectively. A
higher TVD denotes that the tested region is more influential for answer prediction.

We have computed the TVD for each image region with respect to its ranked weight and plotted
the results in Figure 7(b). It can be found that the TVD is monotonously decreasing along the
descending of the ranked attention weight, which demonstrates the tight correlation between the
attention weight and region contribution towards answer prediction. In contrast, many regions
with a very low ranking of Grad-CAM weights (i.e., ranking 26 to 36) yield a strong influence for
answer prediction, which is confusing and violates the visual-grounding ability of Grad-CAM to
some extent. Based on the above experiments, we can conclude that the visual attention is more
faithful than Grad-CAM pertaining to visual grounding in VQA.

5 CONCLUSION AND FUTURE WORK

In this work, we present a model agnostic visual attention regularization approach, i.e., AttReg, to
guide the attention learning in VQA. AttReg has been applied to two strong baselines and signifi-
cantly improves the backbone model performance over the VQA-CP v2 and VQA-CP v1 datasets.
As a by-product, AttReg achieves a new state-of-the-art performance on VQA-CP v2. In addition,
we empirically study the faithfulness of visual attention in VQA. The experimental results have
demonstrated that the visual attention obviously outperform the Grad-CAM in terms of visual
grounding.

In the future, we will extend our approach to other tasks that are also hindered by the unsuper-
vised attention learning problems, e.g., image captioning.
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